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Abstract—We propose a representation for scenes containing relocatable objects that can cause partial occlusions of people in a

camera’s field of view. In many practical applications, relocatable objects tend to appear often; therefore, models for them can be

learned offline and stored in a database. We formulate an occluder-centric representation, called a graphical model layer, where a

person’s motion in the ground plane is defined as a first-order Markov process on activity zones, while image evidence is aggregated in

2D observation regions that are depth-ordered with respect to the occlusion mask of the relocatable object. We represent real-world

scenes as a composition of depth-ordered, interacting graphical model layers, and account for image evidence in a way that handles

mutual overlap of the observation regions and their occlusions by the relocatable objects. These layers interact: Proximate ground-

plane zones of different model instances are linked to allow a person to move between the layers, and image evidence is shared

between the observation regions of these models. We demonstrate our formulation in tracking pedestrians in the vicinity of parked

vehicles. Our results compare favorably with a sprite-learning algorithm, with a pedestrian tracker based on deformable contours, and

with pedestrian detectors.

Index Terms—Computer vision, image representation, tracking, graphical models.
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1 INTRODUCTION

TRACKING multiple targets using fixed cameras with
nonoverlapping views is a challenging problem. One

of the challenges is predicting and tracking through
occlusions caused by other targets or by fixed objects in
the scene. Considerable effort has been devoted toward
developing appearance models that are robust to partial
occlusions [60], [30], [3] and toward developing tracking
algorithms that can cope with a short-term loss of
observations [67], [41], [62]. A complementary line of
research has focused on learning static occlusion maps
using large sets of observations accumulated over time [40].

In this paper, we consider scenarios where it is impossible
to learn a static occlusion map. This is often the case when the
scene consists of both people and large objects whose
position is not permanently fixed. These objects may enter,
leave, or relocate within the scene during a short time span.
We call such objects relocatable objects or relocatable occluders.

Scenarios that include relocatable occluders are quite
common. Fig. 1 shows four examples. In each scenario,
relocatable objects tend to cause severe occlusions of people
in the scene and, since these objects are movable, learning a
single fixed occlusion map is impractical. For instance, in the
supermarket scenario, shoppers accumulate items in gro-
cery carts. The imaging setup typically consists of a ceiling-
mounted camera that looks along the aisles. Because of the
camera’s shallow depression angle, people and shopping

carts frequently occlude each other. In the parking lot
surveillance example, fixed cameras with nonoverlapping
views survey a parking lot with multiple parked vehicles. It
is often the case that the cameras are mounted at a shallow
depression angle to allow for wide coverage. This tends to
lead to frequent occlusions of pedestrians by vehicles in each
camera view. And as the distance from the camera increases,
occlusions become more severe, while the apparent size of
pedestrians gets smaller.

In each of the above scenarios, the person-tracking system
must contend with numerous relocatable occluders in the
scene and their adverse impact on image observations.
Therefore, in scenarios such as parking lot surveillance, the
3D model-based trackers of [35], [8] are likely to be distracted
by intervehicle occlusions. Furthermore, the image resolution
typical in such scenarios makes it difficult to apply 3D
alignment techniques based on high-contrast edges [28]. We
advocate an approach that decomposes the problem into
dynamic scene-maintenance and, conditioned on a scene,
tracking a variable number of people. To make our approach
practical, we propose an implicit 3D representation which can
be rapidly assembled online via a database lookup of
probabilistic graphical model layers corresponding to the
relocatable occluders. In this layer-based formulation, loca-
lization of a relocatable occluder’s mask may be possible via
simple image-based approaches such as template-matching,
even when low image contrast and resolution preclude the
use of richer image-based models [30].

In many practical applications, relocatable objects are of
known classes and tend to be observed repeatedly over
time. Because many examples of relocatable occluders are
observed it is possible to learn a function that decides a
relocatable occluder’s class. Furthermore, these objects’ 3D
models can be acquired using standard methods. Because
the cameras are fixed, 2D image masks of relocatable
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occluders can be precomputed from their 3D models and
stored in a database. In some applications, it may be
advantageous to further subdivide relocatable occluders
into distinct subclasses, and compute subclass-specific 3D
models and their 2D image masks.

In our representation, a scene is modeled as a composition
of depth-ordered layers of probabilistic graphical models.
The number of these models equals the number of relocatable
occluders in the scene at any given time. Each graphical
model is comprised of an occlusion mask, a set of image
observation regions for observing a person’s motion near and
around this occlusion mask, and a first-order Markov model
for the person’s motion around the relocatable object. The
person’s motion model is defined in the relocatable object’s
object-centered coordinate system, but this motion model is
then mapped into the image plane where observations are
obtained. Individual models are then composed to yield a
coherent observation and state space.

We demonstrate our formulation in a parking lot
surveillance application. First, we propose an approach to
account for the image evidence that is sensitive to the
number, position, and depth-order of pedestrians moving
on this discrete state space. Next, using Viterbi optimiza-
tion, we show how a variable number of pedestrians can be
tracked in a sliding temporal window fashion. Because the
state space is vehicle-centric, we not only estimate positions
of pedestrians in the image plane, but also motion patterns
around vehicles in the ground plane; yet the ground plane
is never explicitly referred to during computations.

In summary, we make the following contributions:

. We develop a representation [1] for scenes containing
relocatable occluders. Specifically, the scene is a
composition of depth-ordered layers of graphical
models. These models can be composed on-the-fly to
form a layered global scene model.

. We propose a solution to a specific problem that makes
use of this new representation: tracking of pedestrians
in a parking lot crowded with parked vehicles.

We also note what the paper is not about. This paper is
not about a new appearance descriptor for person-tracking.
In fact, in our example application, due to the very small
apparent size of people and severity of occlusions, we
employ binary images generated by background subtrac-
tion. This paper is not about learning a static occlusion map.
Methods for learning such maps [40], [63], [16] are
complementary to our approach. This paper is not about
free-space tracking, for which off-the-shelf algorithms of

[49], [47], [12] can be applied. This paper is not about high-
level activity recognition; the output of the algorithm is a
sequence of estimates of vehicle and pedestrian locations.
However, the mapping of pedestrian estimates from the
image plane to locations around parked vehicles would
provide valuable cues to an activity-recognition system.

We assume that the only source of information is a single
fixed camera or a set of fixed cameras with nonoverlapping
views. This is the case in many, but not all scenarios. If
multiple overlapping views are available, occlusions must
still be accounted for in individual views. However, it may
be advantageous to track directly in 3D. The applicability of
layers of graphical models to these multiview scenarios is a
promising direction for future research, but it is not within
the scope of this paper.

2 RELATED WORK

In this section, we first review related representations for
dynamic scene analysis, and then discuss related approaches
to tracking persons and vehicles.

2.1 Representations of Dynamic Scenes

The W 4 system [15] demonstrated tracking and activity
analysis of pedestrians walking in isolation or in groups. A
pedestrian was tracked as a bounding box and, in order to
preserve her identity after occlusions, a temporal texture
template was maintained. To reason about her activities,
body parts were inferred from her bounding contour. It is
not clear how the boundary analysis performed in cases of
reduced resolution or low contrast. Because the W 4 system
did not infer depth-order of overlapping pedestrians, it may
have had difficulties with prolonged occlusions. It is also
not clear how the system would handle static occluders in
the scene.

To extract and depth-order multiple moving regions
from uncalibrated video, layered representations have been
proposed [57], [17]. In [20], layers with probabilistic
occupancy that could undergo nonrigid deformations
between frames were investigated. Layered representations
with stronger segmentation priors were proposed in [19],
[50], [25]. With the exception of [50], which focused on
tracking vehicles from an airborne platform so that targets
appeared small relative to the image frame and did not
overlap each other, layer extraction algorithms tend to be
computationally expensive. Sequential layer-tracking and
layer-learning was proposed in [51], but the method might
still be impractical for a real-time system.
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Fig. 1. This figure shows examples of people moving around relocatable occluders such as (a) cars, (b) shopping carts, (c) magazine racks on
wheels. In (d), an example of fixed occluders, desks and workstations, is shown.



One limitation of these layered representations is their
inability to model the motion of targets around layers.
Intuitively, a representation that provides stronger motion
priors, such as the likely motion of a pedestrian in the
vicinity of a parked vehicle, might enable a target tracker to
cope with prolonged occlusions. In [66], a scene was
modeled as a stack of interleaved foreground and back-
ground layers, allowing the algorithm to track objects
through occlusions. However, this approach still did not
address the motion-around-layers aspect of scene modeling.

The use of layered models in tracking systems can be
computationally demanding; therefore, methods that exploit
domain knowledge about appearance changes have been
proposed that offer real-time performance. In [39], a ground-
plane to image-plane mapping was learned from the
bounding boxes of pedestrians and vehicles; the projected
height of pedestrians and vehicles as a function of their
ground-plane positions was also learned and this function
was used to track targets in image coordinates. In [40], this
method was extended to cope with static occluders, such as
the subway turnstiles. However, multiple trajectories of
pedestrians had to be observed to learn these static occluders
over time. Therefore, this method might not be practical to
apply to scenes comprised of relocatable occluders. An
approach to handling static occluders was presented in [56],
but it relied on extracting occluding boundaries of the
foreground objects; this may not work well under reduced
image resolution and increased sensor noise.

When a dynamic scene is comprised of objects of known
types, e.g., vehicles, it may be practical to acquire their 3D
models offline. The scene can then be represented by
instances of these models whose pose varies over time. Such
model-based tracking has been applied to vehicles [35], [8]
and pedestrians [29], [26]. Although a vehicle’s pose may be
tracked more accurately with a 3D model than with only a
2D bounding box, such methods tend to be sensitive to
abrupt changes in the target’s appearance, such as those
caused by relocatable occluders.

When it is not feasible to acquire 3D target models or
when the application does not require an estimate of the
target’s position in every frame, a volumetric representation
may be appropriate. In [42], [54], voxel-carving of a
bounded 3D volume seen from multiple calibrated views
was demonstrated, while in [36], probabilistic voxel
occupancy for change detection was proposed. Such
methods can be computationally intensive if the desired
voxel resolution is high and the number of views is large.
Depending on the application, the computed volumetric
representation may need further parsing to extract indivi-
dual targets of interest.

2.2 Tracking of People

Methods in this section are grouped by the granularity of the
representation. A common approach to tracking a person is
with a monolithic representation—a 2D bounding box [15],
[48] or an ellipse [7] if tracking in the image coordinates, or a
3D bounding box [12] if tracking in the ground plane. To
maintain the identities of targets, a region descriptor may be
added, such as a temporal texture template in [15], a color
histogram in [12], or region covariance in [37]. However, in
some multiview approaches [22], [23], appearance descrip-
tors were considered unreliable and were omitted. A

shortcoming of such monolithic representations, particu-
larly when employed in a single-camera system, is that they
may not be adequate to estimate the targets’ depth-order or
to accurately localize targets during abrupt and severe
occlusions.

To address the shortcomings of monolithic representa-
tions, various forms of partitioning a persons’ model into
subregions have been studied. A method for tracking and
depth-ordering a variable number of closely spaced people
using a single calibrated camera was presented in [18]. A
person was modeled as a generalized cylinder, and its color
appearance in the image plane was modeled as a grid of
uniformly spaced disks. In [21], each foreground blob was
partitioned into regions in a polar coordinate system and
the color distribution of each region was then estimated. In
the multiview approach of [33], a person was modeled as a
cylinder partitioned into horizontal slices, and for each slice
a separate appearance model was maintained. Although a
fixed model partitioning may lead to better performance
than a monolithic model, it may be nontrivial to design a
partitioning that anticipates all possible variations in a
target’s appearance.

In order to better cope with interperson occlusions or to
meet the requirements of a specific application, methods
that align a part-based model to each tracked person have
been proposed. In [47], which tracked pedestrians passing
by a store-window display to determine their focus of
visual attention, the target model was comprised of a
texture-based face component and a 2D bounding box
covering the rest of the body; no depth-ordering was
required by the application. Depth-order and segmentation
of people in close proximity was the main objective in [10],
where a person was modeled in the image plane as an
ellipse that was partitioned based on image evidence into
horizontal slices corresponding to head, torso, and legs
regions. In [27], [26], the pedestrian’s local appearance was
modeled via a codebook, and the pedestrian’s shape
defined implicitly via the spatial probability distribution
over the codebook’s entries. Methods that combine dis-
criminatively trained body-part detectors in a tracking
framework have been proposed in [60], [62], [65]. A method
to combine tracking and detection with a generative part-
based model was proposed in [2]. While part-based models
offer a principled way to handle interperson occlusions,
they may not deal well with abrupt, severe occlusions
caused by relocatable objects in a scene. Moreover, given
the richness of the part-based representations, these
methods require sufficient pixel resolution.

2.3 Relation to the Proposed Approach

Although the scene representations mentioned earlier have
been successfully used in practical applications, these
representations are not immediately applicable to reloca-
table occluders. When there is no overlap between multiple
camera views and when occlusions in each nonoverlapping
view are severe, maintaining an accurate 3D scene model
may become a challenge. In such cases, it might still be
possible to maintain a 2D layered representation of the
scene. However, previous works on layered representations
did not model the motion of a person around these layers.
An additional shortcoming of the layered representations
mentioned in this section is the unique challenge posed by
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the relocatable objects: There might not be enough time to

learn the occlusion masks of these objects before they come

to rest or while they are at rest.
Our approach addresses these shortcomings. A graphical

model layer representation encapsulates our knowledge of
how a person moves around a relocatable object. Multiple
instantiated layers interact, yielding a global model for the
likely motion patterns of people moving in the vicinity of
these layers. Because occlusion masks of relocatable objects
are acquired offline and stored into a database, a global
scene model is assembled on-the-fly rather than learned
from scratch every time a relocatable object enters the field
of view.

A preliminary version of this work appeared in [1]. The

main contributions over [1] include:

. a new, more general formulation is presented,

. experiments are conducted with scene models that
have been updated automatically,

. qualitative comparisons are presented with [44] and
[51], and

. detailed quantitative results are reported.

An additional contribution is in formulating a Viterbi

sliding-window pedestrian-tracking algorithm. A Reversi-
ble-Jump Markov Chain Monte Carlo (RJ MCMC) recursive

filtering algorithm was formulated in a previous version of

our framework [1]. The key advantage of the RJ MCMC

formulation in [1] is that it models uncertainty in the
positions of targets; this uncertainty is represented as

samples in the Markov Chain at each time step. However,

we have found that, in practice, the specifics of the RJ MCMC

death move and severe occlusions tend to yield a set of
samples that is too diffuse to provide a definitive answer to

the question: Where is each person in the scene? The Viterbi-

based tracker proposed in this paper computes a point

estimate of each person’s location.

3 APPROACH

We begin by conveying the basic idea of our approach using

one practical application: parking lot surveillance. We pick
this example for the sake of concreteness and not because

our representation favors this particular application over

other examples mentioned earlier.

The key concept behind the approach is an occluder-
centered representation. This representation encapsulates
our prior knowledge of a person’s motion around a
relocatable object in the ground plane and where this
motion would be observed in the image plane. For
illustration, we define our object-centric model for the
white sedan at the front of the parking lot in Fig. 2.

Because only the projection of motion in activity zones
may be observed, our occluder-centric model is instantiated
as a graphical model layer in the image plane. Expressing
3D mobility and visibility constraints implicitly in a layered
framework opens the possibility of employing simpler
image-plane techniques during inference.

In our global scene representation, a separate graphical
model layer is instantiated for every parked vehicle. For
example, in Fig. 2, a layer is instantiated for the white
sedan, the black SUV behind it, etc. Overlapping layers are
depth-ordered, so we refer to the global scene representa-
tion as depth-ordered layers of graphical models.

An application of our formulation to pedestrian-tracking
in a parking lot is summarized in the diagram of Fig. 3.
Input video frames feed into a module that tracks vehicles
as they arrive, park, or depart. When a vehicle parks, a
precomputed object-centric graphical model is retrieved
from the database of such models and instantiated as a layer
in our global scene representation. Precomputing a data-
base of models is possible since the camera is fixed and a
number of methods can be used to obtain ground-plane
calibration [39], [31]. When a vehicle “un-parks,” its layer is
removed from the global scene representation. Layers in the
global scene representation interact: Observations are
shared between the instantiated models and links are
added so that a pedestrian can transition between layers.
By accounting for image evidence in a way that is sensitive
to the number, image location, and depth-ordering of
the pedestrians near vehicles, the system tracks a variable
number of such pedestrians over time. We next present our
approach in depth.

3.1 Local Representation: Graphical Model Layer

A graphical model layer encapsulates our prior knowledge
of a person’s motion around a relocatable object in the
ground plane and our knowledge of where this motion
would be observed in the image plane. This is an object-
centered representation.
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Fig. 2. To convey the basic idea we focus on one application, tracking of pedestrians in a parking lot, and define our object-centered representation
to the white sedan at the front of the parking lot. (a) We tessellate the ground plane around the vehicle into activity zones. (b) A first-order Markov
process on these activity zones captures motion patterns of pedestrians around vehicles (c) In the image plane, rectangular observation regions,
three of which are shown, are depth-ordered with respect to the vehicle’s occlusion mask. This object-centered representation, called a graphical
model layer, is instantiated for every parked vehicle and composed as depth-ordered layers that interact.



Our notation for the graphical model layer formulation is
summarized in Table 1. We partition a subset of the ground
plane around the relocatable object into N bounded regions,
called activity zones. In our implementation, activity zones are
equally sized nonoverlapping squares, where each square is
large enough to accommodate a person. In Fig. 4a, the squat
box corresponds to a relocatable object. Three of its activity
zones are labeled �1; �2; �3. We emphasize that this is not the
only way activity zones can be defined. For example, one
could contemplate scenarios in which zones vary in size,
overlap, or do not even lie in the same plane.

We are ultimately interested in person-tracking on
activity zones. Therefore, we encode the person’s state as
a random binary N-dimensional vector Y . For Y to be a
valid state, its elements must sum to one.

We model Yt as a first-order Markov process, where
pðYtþ1jYtÞ reflects dynamics of the person and mobility
constraints imposed by the relocatable object. In the

example shown in Fig. 4a, it is reasonable to expect that

the probability of a transition from �1 to �2 is high, while the

probability of a transition from �1 to �3 is very low. These

transition probabilities are summarized in a transition

matrix; a transition matrix for a simple example model is

illustrated in Fig. 4c.
A person standing in � is approximated in the image plane

by a bounding rectangle r, called an observation region. In our
implementation, observation regions correspond to a height
of 1.8 meters to fully cover people of likely heights. Projection
of the relocatable object yields an occlusion mask M.
Observation regions are depth-ordered with respect to
M. Fig. 4b shows the occlusion mask corresponding to the
relocatable object in Fig. 4a. For the three activity zones
�1; �2; �3, we show the corresponding observation regions
r1; r2; r3 and their depth-order with respect to M. Observa-
tion region r1 is marked with �1, indicating that it is behind
M, r2 is marked with 0, indicating that this observation
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Fig. 3. This figure shows an application of our formulation: tracking pedestrians in a parking lot. The proposed scene representation enables tracking
of pedestrians despite prolonged, severe occlusions; this representation is assembled on-the-fly using a database of precomputed graphical model
layers. Please see the text for further details.

Fig. 4. (a) A relocatable object in 3D is shown as a squat box, while a person standing behind it is shown as a tall box. A subset of the ground plane
around a relocatable occluder is partitioned into activity zones �i. A person’s motion on these zones is modeled as a first-order Markov process. For
example, a stochastic transition from �1 to �2 is likely, while a transition from �1 to �3 is not. (b) The occlusion mask M and a subset of R comprised of
three depth-ordered observation regions are shown. (c) The transition matrix for a model with 16 activity zones encodes the ring topology where the
self-transition and transitions to the left and the right neighbors are equally likely; darker colors encode higher probability of transition.

TABLE 1
Notation for Graphical Model Layer Formulation



region does not intersect M, and r3 is marked with þ1,
indicating that it is in front of M. The set of depth-ordered
observation regions is denoted by R.

We represent M as a set of binary random variables and

their probabilities of being equal to one. For every depth-

ordered observation region ri and every pixel u 2 ri, we

define a binary random occlusion variable oi;u. Intuitively,

pðoi;uÞ, the probability of occlusion, can be computed from the

observation region’s depth-order and the occupancy of the

occlusion mask at that pixel. We defineO ¼ foi;ug to be the set

of all occlusion variables in all observation regions.
In many practical applications, image evidence is

computed for every image location u. Example pixel level

features include dense optical flow, frame difference, color

likelihood, etc. We denote by zu an observation at a pixel u,

and let Z ¼ fzug for all pixels in the image. These

observations are generated by conditioning on a particular

state of a person y and occlusion variables O.
Our graphical model layer with dependencies between

all of its variables made explicit is summarized in Fig. 5a.

A Hidden Markov Model interpretation is given in Fig. 5b,

where only the image evidence and activity zone nodes

are shown.

3.2 Global Scene Model: Depth-Ordered Layers of
Graphical Models

Our global scene representation is instantiated by specify-

ing the model type, location, scale, and orientation for each

of the L graphical model layers in the scene. The number of

layers varies over time, as different relocatable objects

arrive in and depart from the camera’s field of view.
The graphical model layers are arranged according to the

depth-order D. In our implementation, we represent D as a

set of variables, one for each pair of layers. The value of

each variable is þ1 if the first layer occludes the second

layer, �1 if the second layer occludes the first one, and 0 if

the two layers do not interact. We add a constraint on these

variables to ensure that no two layers may simultaneously

occlude each other.
A person’s state space in this layered representation is

defined on a concatenation Y1; . . . ; YL, with a constraint that

any realization y1; . . . ; yL sums to one. When not concerned

with the internal structure of the state space, we will refer to

it as Y .

The graphical model corresponding to L instantiated

graphical model layers is shown in Fig. 6a. The generative

model for a single person moving around the relocatable

occluders is summarized by Dynamic Bayes Net (DBN) in

Fig. 6b, where dependence on D is not drawn to avoid

cluttering the diagram. As an example, in Fig. 6c, we

consider a case where L ¼ 2 and transitions from Y2 to Y1

and from Y1 to Y2 are allowed. This DBN encodes the

following scene model: A person either transitions within

Y1, i.e., in the activity zones around the first relocatable

occluder, or within Y2, i.e., in the activity zones around

second relocatable occluder. There exists an edge between a

zone of the first relocatable occluder and the second

relocatable occluder that allows the person to transition

between these occluders. Note that the structure of this

example DBN is not learned, but is instead determined by

the interaction of the instantiated layers. This interaction

yields a global transition graph, which we discuss next.
For a pair of zones owned by the same instantiated layer,

the allowed one-step transitions are defined by that layer’s

graphical model. For a pair of zones owned by different

layers, a one-step transition may be allowed if these zones

are proximal and not separated by an occlusion mask. This

intuition can be formalized by the following connectivity

test: Two vertices from different layers are linked by an

edge if all of the following conditions are satisfied: 1) Their

observation regions overlap and are approximately the

same size and 2) these observation regions are not

separated by an occlusion mask.
In the example in Fig. 7a, three graphical model layers

with masksM1,M2, andM3 are shown, with arrows between

masks indicating their depth-order. Observation region r1 is

behind M1, r2 and r3, are, respectively, in front of and

nonoverlappingM2, and r4 is nonoverlappingM3. Given this

configuration of observation regions and occlusion masks,

our connectivity test is satisfied for the pairs of zones ð�1; �2Þ
and ð�3; �4Þ. The added edges in the graphical model for the

scene are shown as straight lines in Fig. 7b. In Fig. 7c, we

show instantiated occluder masks for a subset of real scene.

The resulting global transition matrix is shown in Fig. 7d.
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Fig. 5. (a) A single graphical model layer is a generative model for the
observations Z given the occlusion mask M, depth-ordered observation
regions R, occlusion variables O, and the location of a person Y . When
this graphical model layer is instantiated into the scene representation,
R and M are determined, and the probability of occlusion O is
computed. Therefore, during inference, we only need to estimate the
person’s position Y given the image evidence Z. (b) The generative
model for a single person moving around a relocatable occluder and
resulting image evidence is summarized by a two-slice Hidden Markov
Model; here the dependence on R, M, and O is implicit.

Fig. 6. (a) In our global scene representation, comprised of L layers,
observations Z are generated by conditioning on a person’s location in
the global state space Y and occlusion variables in all Ols. Occlusion
variables and the global state space are a function of the depth-order D
that is determined when the layers are instantiated. Therefore, during
inference, our objective is to infer Y given Z. (b) A two-slice DBN makes
the structure of Y explicit as a collection of individual Yls. Connections
between Yl;t and Yl;lþ1 are determined by the depth-order D. (c) An
example scene with two graphical model layers. A person moves
between zones around a relocatable object, but may also transition
between these objects as specified by pðY1;tþ1jY1;t; Y2;tÞ and
pðY2;tþ1jY1;t; Y2;tÞ.



3.3 Accounting for Image Evidence in the
Depth-Ordered Layers of Graphical Models

Given the global scene model and incoming video, we want
to account for image evidence Z in each frame as a function
of a person’s location Y . For the sake of demonstrating our
approach, we consider the case of binary features
zu 2 f0; 1g. These features may be obtained by a moving-
pixel detection algorithm based on background subtraction.
Background subtraction tends to work on video sequences
with relatively low resolution and contrast, as the recent
approaches of [12], [13] demonstrate. Other features may be
possible within our model, but this is sufficient to
demonstrate the proposed method.

We summarize our notation for accounting for image
evidence in Table 2. Recall that the occlusions in each
observation region r are modeled by a set of binary random
variables foug, u 2 r. Let ~ou be shorthand for pðou ¼ 1Þ and
~ml;u be shorthand that pixel u belongs to the occlusion mask
of graphical model layer l. The probability that a pixel u in
the observation region r is occluded can be computed from
the set Fr of layers in front of r’s layer:

~ou ¼ 1� pðou ¼ 0Þ ¼ 1�
Y
l2Fr

pðml;u ¼ 0Þ

¼ 1�
Y
l2Fr
ð1� ~ml;uÞ;

ð1Þ

which follows since the event that a pixel u is not occluded
means that it is not covered by any mask from the set Fr.

We define the mask of a person in an activity zone to be a
rectangle equal to the corresponding observation region.
Formally, pðsu ¼ 1jyÞ equals one for any u 2 ry and zero
everywhere else.

Zero or one-person case. Given a person in state Y ¼ y
and the corresponding observation region ry, the prob-

ability of image evidence at pixel u is

pðzujy;R;MÞ ¼
X
su

X
ou

pðzujsu; ou; y; R;MÞpðsu; oujy;R;MÞ

¼
X
su

X
ou

pðzujsu; ouÞpðsujyÞpðoujR;MÞ

¼
X
ou

pðzujsu ¼ 1; ouÞpðoujR;MÞ;

ð2Þ

which sums over all possible assignments of su 2 f0; 1g and

ou 2 f0; 1g in the first line, applies the chain rule on the

second line, and substitutes the person’s mask in the third

line. Then,

pðzu ¼ 1jy;R;MÞ ¼ q2~ou þ q1ð1� ~ouÞ ð3Þ

and

pðzujy;R;MÞ ¼ ½q2~ou þ q1ð1� ~ouÞ�zu

� ½1� ðq2~ou þ q1ð1� ~ouÞÞ�1�zu :
ð4Þ

We assume that, conditioned on the moving person in r,

individual pixels are uncorrelated:

pðzrjy;R;MÞ ¼
Y
u2r

pðzujy;R;MÞ: ð5Þ

For any pixel u 62 ry, we have

pðzujR;MÞ ¼ ðq2Þzuð1� q2Þ1�zu : ð6Þ
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Fig. 7. (a) An example global scene model with three depth-ordered, interacting layers. (b) Based on layer membership, overlap, relative size, and
depth-order of observation regions r1; r2; r3; r4, our connectivity test is satisfied for zone pairs ð�1; �2Þ and ð�3; �4Þ. The edges added to the global
transition graph are shown as straight lines. (c) A subset of a global scene from the PETS 2001 data set, described in Section 4, with M1;M2;M3

corresponding to the rightmost three models of the bottom-left image in Fig. 8; four observation regions are shown. (d) The global transition matrix
for this scene contains transition matrices from each graphical model layer on its block-diagonal; these matrices are outlined with dashed lines.
Layers that own masks M1 and M2 interact, and the likely transitions between their activity zones that satisfy our connectivity test can be seen off
the block-diagonal.

TABLE 2
Notation for Accounting for Image Evidence



For any pixel outside of the union of all the observation
regions, we have pðzuÞ ¼ 0:5. These three disjoint regions
account for all the pixels in the image.

Multiple-person case. It is straightforward to extend our
formulation to the case of K � 1 people occupying distinct
activity zones y1; . . . ; yK . Although in some applications,
activity zones may be designed to accommodate multiple
people, this case is left for future work.

Our generative model accounts for the dynamics of
K people and their occlusion relations in the observation
regions. If Dpersons specifies the depth-order and u is an
image pixel that belongs to the nonempty intersection of the
observation regions corresponding to y ¼ ðy1; . . . ; yKÞ, we
can write

p
�
zujy; Dpersons

y1;...;yK
;R;M

�
¼ pðzujy;R;MÞ: ð7Þ

For the purpose of demonstrating our framework, we have
assumed that the image evidence takes the form of binary
image masks. Binary image masks do not convey informa-
tion about the depth-order. Therefore, if at least one ou;k 6¼ 1,

pðzu ¼ 0jsu;1 ¼ 1; . . . ; su;K ¼ 1; ou;1; . . . ; ou;KÞ ¼ 1� q1; ð8Þ

and it can be shown that

pðzu ¼ 0jy;R;MÞ ¼
X
ou

pðzu ¼ 0js1;u ¼ 1; . . . ; sK;u ¼ 1;

o1;u; . . . ; oK;uÞpðo1;u; . . . ; oK;u;R;MÞ
¼ ð1� q2Þ

Y
k

~ok;u þ ð1� q1Þ
X
ou 6¼1

Y
k

pðok;uÞ:

ð9Þ

Since, in practice, q1 � q2, in our implementation we only
compute the first term, avoiding a summation whose
complexity is exponential in the number of occluding layers
at u.

Although observation regions for several people may
intersect, our tracking algorithm will track these people as
distinct targets if their activity zones are not linked by an
edge. For example, if two people are proximate in the image
plane, but have different depth-order with respect to the
same relocatable occluder, their separate identities will
be preserved by our tracker.

We conclude this section by briefly noting similarities
with prior work. In [12], a person was approximated by a
rectangle, and a generative model was developed to
produce “ideal random images.” A pseudodistance between
those images and the actual binary observations was used in
constructing the likelihood of a person’s location. In [46],
[45], an occlusion-sensitive body-part-configuration like-
lihood was introduced. The image of each body part was
divided into three disjoint sets of pixels: those “underneath”
the part, �1, those in its immediate vicinity, �2, and the rest,

�3. One could also model �1 [ �2 by blurring an occlusion
mask. The notion of a positive center and inhibitory frame
also appeared in [38]. In our case, the union of all
observation regions acts as an inhibitory frame since we
want to account for an unknown number of people.

3.4 Tracking People Using the Global Scene Model

Given the above layers of graphical models representation,
we now turn our attention to tracking a variable number of
people around relocatable occluders.

Formulation. Here, we present a deterministic smooth-
ing approximation that operates on a window of T image
frames; in our complete system, this formulation is applied
in a sliding-window fashion. To accommodate people
entering or leaving the scene within the temporal window,
we augment our global scene representation with an
additional virtual activity zone. The virtual activity zone
can accommodate multiple people, and a person’s track
may enter or exit this zone at any time; since people in the
virtual activity zone are not visible, it has no corresponding
observation region. We summarize our notation for tracking
in Table 3. Let Yt be the location of all people at time t, and
let Y1:T be shorthand for Y1; . . . ;YT . The quantity of
interest is the posterior distribution pðY1:T jZ1:T Þ, which is
proportional to the likelihood of the multiperson state
multiplied by the prior:

pðY1:T jZ1:T Þ / pðZ1:T jY1:T ÞpðY1:T Þ: ð10Þ

We want to approximate the posterior distribution by a
point estimate that yields a maximum. However, since
trajectories are coupled via an exclusive zone occupancy
constraint, maximizing the posterior jointly would be
intractable given the number of zones and potential
trajectories. As suggested in [12], we estimate trajectories
sequentially. Given a person’s Markov process on activity
zones, the probability of a single trajectory y1:T given Y1:T ,
the set of already-found trajectories, and Z1:T , image
evidence, can be written as

pðy1:T jZ1:T ; Y1:T Þ / pðZ1:T jy1:T ; Y1:T Þpðy1:T Þ

¼ pðy1ÞpðZ1jy1; Y1Þ
YT
t¼2

pðytjyt�1; YtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
zone transition

pðZtjyt; YtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
image evidence

:
ð11Þ

Given the recursive dependency between time slices, the
most probable trajectory,

ŷ1:T ¼ arg max
y1:T

pðy1ÞpðZ1jy1; Y1Þ
YT
t¼2

pðytjyt�1; YtÞpðZtjyt; YtÞ;

ð12Þ

can be found efficiently using the Viterbi algorithm.
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TABLE 3
Notation for Tracking Formulation



As was mentioned in Section 3.3, our approach to
account for image evidence handles the case when multiple
people occupy distinct activity zones, but their observation
regions overlap in the image plane. In many cases, such as
when these people are separated by a relocatable occluder,
the resulting zone transition graph will ensure they are
tracked as distinct targets.

Practical considerations. While in principle it may be
possible to directly implement (12), we have found it
advantageous to adopt two enhancements. First, as is the
common practice, we maximize the log-likelihood of the
track Lðy1:T ; Y1:T ; Z1:T Þ obtained by taking the logarithm of
(12). Second, we extend L by introducing multiplicative
weights for the image-evidence and activity-zone transition
terms. These weights allow us to tune the performance of
our tracker for the challenging scenario caused by low
image resolution and contrast. With this extension, our
track log-likelihood becomes

Lðy1:T ; Y1:T ; Z1:T Þ ¼ ‘initðy1Þ þ ‘imgðy1; Y1; Z1Þ

þ
XT
t¼2

f‘transðyt; yt�1;YtÞ

þ ‘imgðyt; Yt; ZtÞg:

ð13Þ

In (13), we define ‘initðy1Þ ¼ 0 if y1 corresponds to the
virtual activity zone and �c0 otherwise. We define
‘imgðyt; Yt; ZtÞ ¼ c1 log pðZtjyt;YtÞ. To design the transition
likelihood, ‘transðyt; yt�1;YtÞ, we consider four cases. When
yt�1 corresponds to the virtual activity zone, but yt does not,
we define ‘transðyt; yt�1;YtÞ ¼ �c0 as before. When neither yt
nor yt�1 correspond to the virtual activity zone and the
activity-zone occupancy constraint is not violated, we define
‘transðyt; yt�1;YtÞ ¼ c2 log pðytjyt�1Þ; the limit on activity-zone
occupancy is enforced by defining ‘transðyt; yt�1;YtÞ ¼ �1 if
yt is already occupied by Yt. When a person transitions into
the virtual activity zone, we define ‘transðyt; yt�1;YtÞ ¼ �c3,
and when a person remains in the virtual activity zone we
define ‘transðyt; yt�1;YtÞ ¼ �c4. While the resulting set of
multiplicative weights may not be the only way to extend L
for our challenging scenarios, it has the advantage of simply
enumerating all cases of interest.

We learn c ¼ c0; . . . ; c4 from a set of training samples,
comprising triplets yþ1:T ; y

�
1:T ; Z1:T , where for each triplet we

require that Lðyþ1:T ;Z1:T Þ > Lðy�1:T ;Z1:T Þ. Finding a feasible c
is then formulated and solved as a linear program. This
approach to learning Lwould have limited practical use if it
had to be applied to each temporal window and would be
computationally demanding if L had to be relearned each
time a graphical model layer was instantiated or removed
from our global scene representation. While the analysis of
generalization guarantees is left for future work, in our
experiments, we found that a single trained L tends to work
well across different dynamic scenes, with varying numbers
of relocatable occluders.

Given L in (13), our top-level tracking algorithm is
straightforward and is comprised of two stages. In the first
stage, the algorithm attempts to extend every track from the
previous temporal window, starting with the longest track; in
the second stage, the algorithm attempts to find new tracks.
Each stage of the algorithm terminates once the relative
increase in the log-likelihood becomes less than a threshold;
thus the top-level algorithm has one tunable parameter.

3.5 Computational Complexity

As shown in [9], the computational complexity of a direct

application of the Viterbi algorithm to an observation

sequence of length T generated by an HMM with N states

is OðT �N2Þ. To extend this analysis to our person-tracker,

we note that if � is the set of all the pixels in all of the

observation regions, then the computational complexity of

evaluating ‘img is linear in its cardinality, i.e., Oðj�jÞ. By the

design of our tracking algorithm, the computational cost of

estimating K tracks is linear in K. Therefore, the computa-

tional complexity of estimating trajectories of K people over

T frames on N activity zones is

O K T �N2|fflfflffl{zfflfflffl}
transitions

þ T �N � j�j|fflfflfflfflfflffl{zfflfflfflfflfflffl}
image evidence

2
64

3
75

0
B@

1
CA: ð14Þ

The computational complexity of evaluating the image

likelihood for each slice of the dynamic programming may

be further reduced by sharing computations between the

observation regions. In our implementation, a base image

likelihood is evaluated once for each time slice and is then

used to compute ‘imgðy; �Þ in a way that only considers the

image evidence localized to ry. This reduces the overall

computational complexity to

O K T �N2 þ T � j�j|{z}
base likelihood

þN � jraveragej|fflfflfflffl{zfflfflfflffl}
local evidence

0
B@

1
CA

2
64

3
75

0
B@

1
CA; ð15Þ

where jraveragej is an average size of the observation region.
In a fully optimized implementation, the computational

complexity can be significantly less than specified in (15).

For example, to extend a pedestrian track one can exploit

the pedestrian’s mobility constraints to avoid computing

activity-zone transitions for the entire parking lot.

3.6 Dealing with Uncertainty

Potential sources of uncertainty in our system include noisy

image measurements and imprecise instantiation of model

layers. This measurement noise and imprecision in the

scene model can propagate into the estimates of the number

of pedestrians and their positions in the scene.
In our formulation, noisy image measurements are

handled by aggregating image evidence within the

observation regions and across time in our Viterbi-based

tracker in (12). Uncertainty in the scene representation is

handled by explicitly taking the probability of occlusion at

each pixel of an observation region into account in (2).

This probability of occlusion is based on “soft” occupancy

of each layer’s occlusion mask in (1), and therefore allows

our person-tracker to explicitly account for the layers’

positional uncertainty.
Additional steps can be taken to account for the

propagation of noise and errors in our formulation. For

instance, measurement noise can also be accounted for in

our DBN model by using the sum-product algorithm [24] to

compute the marginal distributions over activity zones for

every video frame.
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4 EXPERIMENTS

We demonstrate our formulation in the domain of parking
lot surveillance. As was mentioned in Section 1, parking lots
adjacent to office buildings are often surveyed with one or
more fixed cameras pointing at different parts of the lot. The
cameras tend to be installed on a building at a shallow
depression angle to maximize coverage. This results in
severe occlusion of pedestrians and vehicles, especially as
the distance to the camera increases. If we regard vehicles as
relocatable occluders, the scene can be represented as depth-
ordered layers of graphical models. If necessary, this
representation can be applied independently to each
nonoverlapping view.

4.1 Implementation Details

Database of graphical model layers. We define five
relocatable object types—sedan, van, hatchback, station
wagon, and minivan—and for each type, we define a coarse
3D polygonal mesh. We define a ring of square nonoverlap-
ping activity zones around a vehicle. For the hatchback, the
smallest vehicle type, this yields 16 activity zones, and for
the remaining types it yields 18 activity zones. Zone
transition probabilities are defined so as to make transitions
to immediate neighbors equally likely and to disallow
jumps to nonneighboring zones; the same rule applies to the
global scene representation as defined in Section 3.2.

We construct a database of models by deterministically
sampling vehicle poses in the ground plane. We calibrate the
camera using the approach of [31]. For each vehicle type, its
orientation is sampled at 16 uniformly spaced angles, and its
ground-plane coordinates are sampled in the regions
corresponding to high-trafficked areas. These high-traffic
areas are defined in more detail when we discuss our data
sets, but suffice it to say that in our experiments the number
of samples of the ground-plane coordinates ranges between
20 and 25, depending on the size of the parking lot. Given a
vehicle’s pose in the ground plane, we employ computer
graphics rendering to obtain the occlusion mask and depth-
ordered observation regions. Since the rendered occlusion
masks are quite coarse, we blur them before computing the
probability of occlusion in each observation region.

Scene update module. Approaches to tracking vehicles
using 3D models or 2D masks have been studied [35], [8], [4],
[55] and a patch-based appearance modeling method was
proposed in [64]; such a vehicle-tracking module can
operate alongside our system. To demonstrate our pedes-
trian tracker, we implemented a module that instantiates
layers when a vehicle enters a legal parking spot. The
module operates on a sliding window of frames and relies
on binary moving-pixel images and multiframe sparse
optical flow. The simple algorithm has bottom-up and a
top-down stages. In the bottom-up stage, a foreground blob
is compared against the likely vehicle masks at this image
location. If the blob passes this test, sparse optical flow is
used to compute the distribution over the discrete set of
mask orientations in the database. In the top-down stage, a
candidate database mask attempts to account for image
evidence over a window of frames. If the mask is confirmed,
it is used to follow a vehicle until it comes to rest; otherwise,
the hypothesis of a moving vehicle is rejected.

In our experiments, the initial scene representation was
obtained by manually specifying the image location, depth-
order, and type of each layer, then looking up the nearest in
the image-plane coordinates models from the database.
Because parking lots typically empty out at night, a
surveillance system that works around-the-clock could be
configured to start with an empty scene representation each
morning. If there is sufficient pixel resolution, approaches
such as [59], [61] may be employed to segment layer masks
in the initial frame.

We also implemented a module to uninstantiate layers
from the global scene model. This module relies on the
same image evidence used for layer instantiation, but the
algorithm is reversed. Specifically, during each temporal
window we evaluate two hypotheses for each layer. Under
the first hypothesis, image evidence is evaluated condi-
tioned on that layer being stationary. Under the second
hypothesis, image evidence is conditioned on that layer
moving. The motion trajectory for the second hypothesis is
deterministically proposed from optical flow. A likelihood-
ratio test determines whether or not the layer is removed
from the global scene model. In practice, we have found
that our uninstantiation module is discriminative enough to
detect when a faraway vehicle “un-parks” while not being
distracted by pedestrians walking past vehicles.

As the experiments in this section demonstrate, pedes-
trian detectors are not a good match for our data sets.
Therefore, we have to rely on cues compatible with the
available image resolution and contrast, such as moving-
region size, to “explain away” image evidence unrelated to
pedestrians. We employ a heuristic to suppress false tracks
due to moving vehicles: Image evidence in an observation
region is considered explained away if this observation
region overlaps a foreground blob three times its size. In a
system engineered as a turnkey solution, this algorithm
could be tuned further. In principle, a probabilistic
formulation that jointly reasons about all of the unknowns
in the scene is expected to be more effective, but the
concern is that the computational complexity of inference
would make it unsuitable for practical applications, such as
real-time surveillance.

Parameter settings. The parameters of our system are
fixed across all experiments as follows:

. Binary occlusion masks in the database are blurred
with a Gaussian filter whose half width equals 0.1
times the height of the mask.

. To generate Z, i.e., detect moving pixels, we rely on
a background subtraction method based on a
mixture of Gaussians. We use an implementation
provided by the OpenCV library [6] with default
parameters, except for bg_threshold=0.9. That
value was chosen manually to make the background
model rapidly adapt to parking and unparking
vehicles on the “training” sequence from the PETS
2001 data set 1, camera view 1.

. To model Z, we set q1 ¼ 0:6 and q2 ¼ 0:1.

. To generate optical flow, we use an implementation
of [5] with default parameters.

. The maximum number of pedestrians to track
simultaneously is set to 10.
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. Since the PETS2001 “training” sequence does not
have ground-truth bounding boxes, our track like-
lihood function was trained from 928 samples
created with our generative model. For each sample,
we first generated a tracklet of length T ¼ 10 and its
image evidence sequence, then generated an “in-
ferior” tracklet by perturbing the correct one.

4.2 Data Sets1

We test our formulation on six video sequences that capture
pedestrian and vehicle activities in outdoor parking lots.
Typical frames from these sequences and vehicle masks
from the corresponding global scene models are shown in
Fig. 8. The six video sequences are summarized in Table 4.
We next describe our test data in greater detail.

PETS 2001 data set. This data set was originally
presented at PETS 2001 [52] and has served as a benchmark
for numerous studies, e.g., [44], [43], [67]. We focus on the
“testing” sequence from data set 1, camera view 1, since
occlusions in that view tend to be more severe. The size of
each image frame is 768� 576 pixels. The bounding box for
the nearest vehicle, which happens to be facing away from
the camera, is 66� 46 pixels. The bounding box for an
unoccluded pedestrian standing next to this vehicle is
15� 44 pixels.

To generate a database of models for the PETS 2001
sequence, we defined a high-trafficked area to cover the
driving lanes and the legal parking spaces. We then
deterministically sampled 20 ground-plane locations from
this high-trafficked area, and for each location generated one
model for each of 16 vehicle orientations and five vehicle
types. We stored these models in the database, indexed by
the 2D image location, orientation, and vehicle type.

Cambridge Office Park 2007 data set. These sequences
were collected at an office park in Cambridge, Massachu-
setts, during the morning and evening peak hours, and were
presented in [14]. The parking lot contains approximately
100 parking spaces. Vehicles parked in the spots toward the
front of the parking lot are oriented sideways with respect to
the camera. Vehicles parked farther away are either facing
the camera or are facing away from the camera. The image
size in each of these videos is 720� 480 pixels. The projected
size of vehicles ranges from 170� 70 up front to 54� 19 in
the middle of the parking lot. An unoccluded person in
the middle of the parking lot projects onto a bounding
rectangle of size 10� 18. In our experiments, we focus on the
middle and front portions of the lot.

A single database of models was shared among all of the
COP2007 sequences since they all had been captured with
the same camera parameters. Because sedans and station
wagons in the US tend to be larger than their European
counterparts, we enlarged our coarse 3D models for these
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1. The data sets and results may be found at http://www.cs.bu.edu/
groups/ivc/data/LayeredGraphicalModels.

Fig. 8. Top: Representative frames from PETS2001 (left) and COP2007 (center and right) video sequences. Bottom: Vehicle masks from the

corresponding global scene models. Arrows in the left two columns highlight automatically instantiated layers; arrows in the right column highlight

layers that were automatically uninstantiated later in this video sequence.

TABLE 4
Summary of Test Video Sequences



vehicle types. The high-trafficked area was defined to
include the driving lanes and the legal parking spaces in the
middle and front portions of the lot. Twenty-five ground-
plane locations were deterministically sampled, and then
the database of models was generated using the same
procedure as for the PETS 2001 data set.

4.3 Qualitative Evaluation

Before conducting the quantitative evaluation of our
implementation, we first perform qualitative comparisons
with two published methods [44], [51]. The method of [44]
employs a deformable-contour model, and qualitative
results were published for test sequence (e), the sequence
from the PETS 2001 data set. The method of [51] learns
flexible sprites and is applied to a portion of test sequence
(a), but the results diverge so far from the ground-truth that
only a qualitative analysis seems practical.

Comparison with a deformable contour-based tracker.
In [44], a B-spline contour was fit to pedestrian-sized
foreground blobs and projected onto a learned space of
pedestrian outlines. A confirmed pedestrian was tracked
frame-to-frame by optimizing her outline from the previous
frame to match edge evidence in the current frame; her state
was modeled in 3D. Other moving objects in the scene were
tracked as regions. Parked vehicles were incorporated into
the background, but pixel values occluded by such vehicles
were saved; if a parked vehicle moved, the original
background was restored.

In [44], this system is applied to sequence (e) from the
PETS 2001 data set, but only a qualitative description of the
tracker’s output at selected frames is provided. This
description indicates that the tracker correctly follows
isolated pedestrians, e.g., for frames 564 and 975. The driver
of a recently parked Peugeot hatchback is tracked from frame
933. The only case of prolonged partial occlusion happens
between frames 1,036 and 1,147 when a group of three
pedestrians walks between parked vehicles. The description
at frame 975 indicates that these three individuals are briefly
tracked and the description at frame 1,213 indicates that

some of these individuals are tracked, but it is not clear

exactly what happens during the period of occlusions. Since

[44] does not employ explicit depth-ordering of occluding

layers—parked vehicles are merged into the background by

design—it may have difficulties in scenarios where partial

occlusions are more frequent.
Our scene model is designed to account for image

evidence in the vicinity of parked vehicles. As soon as the

first pedestrian to enter the scene overlaps one of the

observation regions at frame 153, shown in the bottom-left

of Fig. 9, she is tracked by our system. At frame 621, our

scene update module detects that a recently arrived hatch-

back is entering a legal parking area. At frame 729, the

hatchback is determined to be at rest, and a new graphical

model layer is added to our scene representation. Our

system tracks the driver of the hatchback starting with

frame 933. For the three closely spaced severely occluded

pedestrians, three tracks are started at frame 1,089.

Although no free-space vehicle-tracking is performed, the

instantiated layer’s location and orientation is comparable

to [35, Fig. 9]; that system uses a 3D model-based ground-

plane vehicle tracker with six degrees of freedom.
While it may seem that both the method of [44] and our

tracker produce pedestrians’ bounding boxes, knowledge of

the associated activity zones is helpful. For instance, the

driver in sequence (e) is tracked in the activity zones

associated with the hatchback and the vehicle to the right of

it. This, combined with the knowledge that, in the United

Kingdom, a driver sits on the right-hand side, can be used

for further semantic analysis, if desired.
Comparison with flexible sprites. In another qualitative

study, we compare performance of our method with the

well-known sprite-learning approach of [51]. For the

purpose of comparison, we selected a 250-frame subse-

quence from parking lot video (a) where there is substantial

pedestrian activity and partial occlusions. The first and last

frames of this subsequence are shown in the top-left and
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Fig. 9. Example frames from our tracking algorithm applied to test video (a), top row, and to test video (e), the PETS 2001 sequence, bottom row.
Rectangles indicate observation regions corresponding to the ground-plane zones selected by the tracker; the color of these rectangles in each
frame is chosen for visual contrast. A missed pedestrian is marked with a dashed arrow, correct detections are marked with solid arrows.



top-center images of Fig. 10, with arrows highlighting the
pedestrians’ positions.

We use a publicly available implementation of [51] with
default parameters, except for the translation window,
which is made large enough to track every highlighted
pedestrian. The number of foreground layers is limited to
three as the computational complexity grows exponentially
with the number of layers. Processing our subsequence
requires 4.6 hours on an Intel Core2 Quad 2.8 GHz CPU.

In the top-right of Fig. 10, we show the background layer
learned by [51]. All pedestrians except for the one high-
lighted with a dashed arrow, have been correctly removed
from the background. Note that the pedestrian considered
to be a part of the background is the same one missed by
our tracker in Fig. 9.

The bottom row of Fig. 10 shows the three learned
foreground layers. The first layer seems to capture abrupt
lighting variations in the input video frames, the second
layer captures one of the foreground pedestrians and several
pedestrians at a distance, and the third layer seems to model
the same spatial regions as the second layer. This outcome
may indicate that the small apparent size of pedestrians and
their prolonged occlusions may not be handled well by a
flexible sprite learning method such as [51]. In particular, it
may be challenging to employ these results to guide
subsequent scene analysis, such as pedestrian-counting or
pedestrian-vehicle association. During this subsequence our
system tracks five pedestrians: the two occupants of a
recently arrived vehicle, who are both occluded from the
shoulders down, a person approaching the mid-field from
the far end of the parking lot, and two individuals
approaching a MINI Cooper in the right-hand portion of
the image frame. In the frames preceding this subsequence,
two vehicles arrive nearby almost simultaneously. The first
one is severely occluded by other vehicles and a tree so its

layer is not instantiated. Our method correctly instantiates a
layer for the second vehicle and tracks its driver as he exits
and then retrieves items from the rear seat.

Comparison with a color and texture-based tracker. In
[1], a qualitative comparison with a color and texture-based
multitarget tracker was performed using the implementa-
tion provided by [49]. It was noted that the lack of color
information, low resolution, and severity of occlusions made
the COP2007 sequences a poor match for their color/
texture-based tracker.

4.4 Quantitative Evaluation

Before presenting a detailed quantitative evaluation of our
pedestrian tracker running in parallel with our automatic
scene update module, we first evaluate the scene update
module.

Evaluation of scene-maintenance module. We evaluate
our scene update module with respect to the time of update
and the location of the instantiated and uninstantiated
occlusion masks. To enable such an evaluation, two human
subjects not involved in the algorithm development
provided spatiotemporal annotation of the arrivals and
departures of vehicles in all of our test video sequences.

We computed absolute differences in video frame indices

between our system’s estimates and subjective annotations,

and computed the F-measure between the bounding boxes of

the affected graphical model layers against the bounding

boxes marked by the human subjects. The F-measure between

the estimated bounding box E and a ground-truth bounding

box GT was defined in [48] as F ¼ 2 � �
�þ� , where � ¼ jE\GT jjGT j ,

� ¼ jE\GT jjEj , and j � j denotes the area of a bounding box.

As shown in Table 5, the average absolute temporal error

of our scene update module is less than two seconds, while

the average F-measure is 0.79. Given that the perfect
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Fig. 10. A flexible sprite learning method is applied to a 250-frame subsequence of test sequence (a) with the first and last frames shown in the top
row. Moving pedestrians are highlighted with solid arrows and the stationary pedestrian with a dashed arrow. Although the learned background layer
accurately models the stationary background, the three foreground layers do not seem to match individual pedestrians. Please see text for further
discussion.



F-measure is 1.0, the performance is good; it also agrees

with the examples shown in Fig. 8, where arrows point to

the automatically instantiated or uninstantiated layers.
Vehicles entering a parking spot typically decelerate

gradually before coming to rest. Our scene update module
has to decide when the vehicle has stopped, which is
complicated by low resolution and the fact the a vehicle may
be “creeping”; hence there seems to be a bias in our system
to instantiate models a bit earlier. In fact, without access to
vehicle odometry, it was challenging even for our human
subjects to pinpoint the precise video frame where a vehicle
came to rest. As the F-measure between the ground-truth
and the automatically decided bounding boxes indicates,
this temporal discrepancy results in a small spatial error.

Evaluation of pedestrian-tracking with changing scene

models. Although the PETS2001 data set has served as a
benchmark for numerous studies, e.g., [44], [19], [43], [67],
there tends to be large variability in evaluation protocols.
We adapt the evaluation metrics proposed in [48] and used
in [47] that are specifically designed for multi-object
tracking systems.

As an overall performance measure, we employ the
configuration distance CDt at time t and the average
configuration distance CD, computed over a video se-
quence of length n:

CDt ¼
Nt
E �Nt

GT
max

�
Nt
GT ; 1

� ; CD ¼ 1

n

Xn
t¼1

jCDtj: ð16Þ

A perfect tracker yields CDt ¼ 0 for every t, a missed target
at time t results in CDt < 0, while false tracks or multiple
tracks for the same ground-truth target result in CDt > 0; by
construction, 0 � CD <1.

We assess the CD for our person-tracking system at
different settings of the sliding-window length parameter T
for each of the six parking lot video sequences listed in
Table 4. The results of this assessment are shown in the
graph of Fig. 11: As T increases, the CD tends to
monotonically decrease to the global minimum and then
it monotonically increases somewhat.

In [12], a single value of T ¼ 100 was used, but the reasons
for this choice of T were not clear. In our application, the
preference toward smaller T may be related to the video
camera’s frame rate, the average duration of parking and
unparking events, and average pedestrian speed.

As a general principle, smoothing with more observations
(i.e., increasing T ) should tend to improve accuracy; this is
typically the case for error measures related to kinematic
quantities, e.g., position and velocity. Since CD is a counting
error measure, increased T may sometimes work to our
advantage and sometimes have the opposite effect. Further-
more, our current implementation of the scene update
module computes a tracking estimate for the entire window

of T frames, and this determines the state space for the
person-tracker for these T frames. While in principle the
locations of relocatable occluders, the size and the topology
of the person-tracking state space, and the locations of an
unknown number of persons can be optimized jointly, the
resulting inference may be too slow for practical applications
such as real-time surveillance; this interesting direction is left
for future work.

Comparison with a tracking-by-detection method and

with pedestrian detectors. An evaluation with the track-
ing-by-detection-and-association approach of [60], de-
scribed in Section 2, was performed; it was done by the
authors of [60] themselves. However, it was reported to us
that their detection-and-association tracker was not well-
suited for our scenarios due to poor resolution, contrast,
and, to some extent, strong perspective distortions. The
assessment provided by the authors of [60] parallels the
observations reported in two other tracking-by-detection
approaches. In [62], “... people that are too small in the
images (less than 24 pixels in width) are not counted in the
evaluation,” and in [26] “All images have been processed at
their original resolution by SfM and bilinearly interpolated
to twice their initial size for object detection.”

We next compare our proposed approach with the
implicit shape model (ISM) pedestrian detector of [26],
described in Section 2, and the Latent-SVM (LSVM)
pedestrian detector of [11]. The LSVM approach can be
thought of as extending a window-based monolithic
detector to a window-based detector informed by a
pictorial-structure model of an object; the LSVM detector
achieves state-of-the-art results on the PASCAL Visual
Object Classes challenge.

For such a comparison, the configuration distance (CD)
alone may not provide enough insight into a tracker’s
performance. Therefore, we adopt a more comprehensive
set of performance measures which were originally pro-
posed in [48] and applied to evaluate a tracking system in
[47]. These additional performance measures are summar-
ized in Table 6, and are computed for each frame t of the
PETS2001 test video sequence. Whether or not a system
bounding box matches a ground-truth bounding box is
decided by comparing these boxes’ F-measure against the
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TABLE 5
Evaluation of the Scene-Maintenance Module

Fig. 11. CD as a function of T on the complete system comprised of a
person-tracker and an automatic scene update module. Curves are
shown for each of the six parking lot video sequences listed in Table 4.
The mean performance curve in the graph is computed using the CD
over all frames in the six sequences.



coverage threshold, �c 2 ð0; 1�. Given these per-frame mea-
sures, a system’s performance on a test video sequence can
be summarized by averaging these measures over all the
frames, yielding four nonnegative numbers: FP, FN, MO,
and MT. One shortcoming of these performance measures
is that, in the general case, their average need not equal CD.

As mentioned in Section 1, the contribution of our
approach is not in free-space pedestrian-tracking. There-
fore, to ensure a fair comparison, our person-tracker was
not penalized for missing pedestrians whose bounding
boxes did not overlap the observation regions of our scene
model. Conversely, pedestrian detectors were not penalized
for false alarms if the bounding boxes of these false
detections did not overlap any of the observation regions
of our scene model. In order for the pedestrian detectors
[26], [11] to work, each video frame of our test sequences
must be upsampled and interpolated by a factor of 2.5.

We apply our evaluation protocol to test sequence (e)
from the PETS2001 data set, with a set of coverage test
thresholds �c 2 ½0:1; 1�. As Fig. 12 indicates, overall our
system based on layers of graphical models performs
equally well or better on all four performance measures.
The LSVM approach of [11] does not seem to be competitive
on this data set. With respect to the ISM approach, our
systems achieve uniformly better results with respect to FP
as well as MO, are competitive in terms of MT, and are
decisively better in terms of FN.

Comparing our system to a system comprised of the
same person-tracker but a ground-truth scene update

module shows no significant difference. While the system

based on automatic scene update has slightly better FN for

�c < 0:5, the two systems are quite close in terms of

performance everywhere else.
By varying �c, we change the criterion for a match

between an estimated and a ground-truth bounding box. As

�c increases, the bounding box for a ground-truth track and

the bounding box for an estimated track must have a

greater overlap to pass the coverage test and be matched.

Therefore, when �c increases so does the mean false

positive, FP, as an increased number of estimated tracks

do not match the ground-truth tracks. Because our evalua-

tion protocol ignores false negatives (FNs) originating from

ground-truth tracks that do not pass the coverage test with

at least one observation region of our scene model, FN will

tend to decrease as �c increases. The multiple objects (MOs)

measure decreases because if an estimated track partially

overlaps several ground-truth tracks, the overlapping pairs

of tracks will fail the coverage test and no MO error will be

recorded. Because our tracking algorithm penalizes tracks

that attempt to explain the same image evidence, there are

few multiple tracker (MT) errors; as �c increases MT

decreases for the same reasons, as does MO.
In summary, the tracking-by-detection approach of [60]

was not a good match for this data set, and performance of

the LSVM pedestrian detector of [11] was not competitive.

Our pedestrian-tracker based on layers of graphical models

with automatic scene update performed as well or
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TABLE 6
Summary of the Extended Performance Measures Proposed in [48]

Fig. 12. For test sequence (e), average configuration error measures from [48] are plotted against the coverage-test threshold �c. As �c increases, the
bounding box for a ground-truth track and the bounding box for an estimated track must have a greater overlap to be matched, yielding different error
rates. The evaluated approaches are Layers of Graphical Models with our automatic scene update module, Layers of Graphical Models with the
ground-truth scene update, ISM pedestrian detector of [26], and Latent-SVM pedestrian detector of [11].



decisively better than the ISM pedestrian detector of [26] on
all performance measures.

Throughput. Our video manipulation subsystem runs
on .NET and is written in C#. The pedestrian-tracking is
implemented in C++ and is called from the .NET platform.
Our system runs on a single core of a 2.83 GHz Intel
Core2 Quad CPU under Windows 2003 Server OS. Our
person-tracker in isolation runs on average at 6.74 Hz on
the PETS2001 video sequence cropped to 720� 480 pixels,
given the foreground moving pixels for every video frame.
In theory, background subtraction and other subsystems of
our complete system can be run on separate processor
cores concurrently with tracking, but implementing this
computational model is left for future work.

Our throughput compared favorably with the speed of
the competing systems that we evaluated. It was reported in
[60] that their tracking-by-detection approach was evalu-
ated on a 3.0 GHz dual-core dual-CPU, and that their
implementation utilized all four cores. On their subset of
the CAVIAR data set with resolution of 384� 288 pixels,
they reported an average throughput of 0.27 Hz. The
publicly available implementation of the LSVM pedestrian
detector was implemented in MATLAB with MEX-calls; it
required about 40 seconds to process a video frame of the
PETS 2001 test sequence. The publicly available implemen-
tation of ISM pedestrian detector was a Linux binary; it
required about two minutes per video frame on the
PETS2001 test sequence.

5 CONCLUSIONS

In our experiments with the parking-lot videos, we have
found that the proposed method is able to track pedestrians
within the vicinity of parked vehicles despite prolonged,
severe occlusions. This level of performance is achieved
with the aid of a very simple form of image evidence—raw
output of a background subtraction algorithm. Our experi-
ments have demonstrated that in such scenarios, ap-
proaches that rely on part-based detectors and on
tracking-by-detection do not perform as well as our
approach. The experiments have also shown that it is
possible to automatically maintain our global scene repre-
sentation, to change on-the-fly the state space for pedestrian
tracking, and to track pedestrians at the same time.

However, our experiments also indicate several areas in
need of improvement. The current choice of image features
allows our system to cope with the small apparent size of
pedestrians, but these features tend to be quite noisy. We
believe that this shortcoming may be overcome by optimiz-
ing the existing features using training scenarios [58].
Another way of addressing this challenge is to only report
a pedestrian’s track after she has moved away from a
vehicle and is being reliably followed by a free-space
pedestrian tracker.

As future work, we aim to develop a formulation for
tracking on the boundary of free-space and activity zones,
and to validate this formulation with a free-space tracker that
is well-matched for our challenging data sets. In addition, our
module for instantiating and uninstantiating vehicle models
in parking spaces could be primed by a free-space vehicle
tracker [35], [34], [4]. One would expect that by integrating
observations of a vehicle over time, it may be possible to more
accurately predict its type [32] and orientation. A side benefit

of employing the free-space pedestrian and vehicle-trackers
is the potential to filter out false tracks computed by our
system that overlap moving vehicles.

Another promising direction for future research involves

extending our formulation to overlapping camera views. A

direct extension of our approach is to maintain a separate

scene model in each view [21], [53] and fuse the image

evidence across all the views [23]. Another approach is to

maintain one global 3D representation [54], [23] for

relocatable objects and pedestrians. In the 3D case, activity

zones around a relocatable object could be defined in the

same way as before. A connectivity test to link activity zones

of different models could then take into account ground-

plane proximity rather than rely on the image-plane cues.
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